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Non-negative Matrix Factorization of Gamma-ray
Spectra for Background Modeling, Detection, and

Source Identification
K. J. Bilton, T. H. Joshi, M. S. Bandstra, J. C. Curtis, B. J. Quiter, R. J. Cooper, and K. Vetter

Abstract—Radiological source search is a challenge involving
the detection, identification, and localization of weak sources
within background environments that vary both spatially and
temporally. In this work, a method for simultaneously detecting
and identifying gamma-ray sources using background models
formed from spectral data is described. Non-negative matrix
factorization (NMF) is used to generate low-dimensional repre-
sentations of gamma-ray spectra, allowing for a compact means
of capturing variation in gamma-ray backgrounds. Background
models formed using NMF are used to perform anomaly de-
tection, and additionally, models are augmented with spectral
templates of gamma-ray sources to perform simultaneous detec-
tion and identification using a likelihood ratio test. The NMF-
based detection and identification algorithm is benchmarked
against a standard Region of Interest algorithm and shows
significant performance gains. Additionally, NMF-based anomaly
detection shows improvements over methods based on gross
counts or Principal Component Analysis. Algorithm performance
is evaluated using unshielded sources with activities between
5 µCi and 400 µCi at a standoff distance of 20 m using source
injection on background data collected using a 1 m2 NaI array
on the Radiological Multi-sensor Analysis Platform.

Index Terms—Gamma-ray detection, gamma-ray spectral
analysis, radiation source search, anomaly detection, non-
negative matrix factorization

I. INTRODUCTION

DETECTING and identifying radiological sources within
environments with dynamic radiation backgrounds is

essential for applications in homeland security, emergency
response, environmental monitoring, and contamination re-
mediation. In particular, radiation source searches involve
detecting and identifying potentially weak sources in com-
plex background radiation environments by means of mobile
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radiation detection systems. In most cases, rates and energy
distributions of background gamma radiation are not known
a priori, making it challenging to know what should be
considered an anomalous measurement, particularly for weak
sources.

Alongside difficulties associated with the radiological back-
ground, there are operational constraints which limit the ef-
fectiveness of anomaly detection algorithms. In practice, false
alarms may elicit a response from system operators, and as a
result, the acceptable false alarm rate (FAR) (e.g., 1 alarm in
8 hours) places a lower limit on decision thresholds, affect-
ing the detection sensitivity. Furthermore, medium-resolution
scintillation detectors (e.g., NaI) are often used, primarily due
to lower cost per unit volume, and in turn, the most prominent
spectral features from a radiological anomaly typically span a
relatively broad range of energies.

A variety of methods are used to detect and identify
radiological sources, some of which mitigate the previously
described challenges by accounting for the variability seen in
the radiological background. Among the simplest approaches
are a class of algorithms that only consider the measured gross
count rate, neglecting spectral information and only alerting
operators when the total counts exceeds a threshold. As a result
of neglecting spectroscopic information, such algorithms lack
the ability to identify the gamma-ray source causing the alarm.
Additionally, background count rates vary drastically, and
methods based on the gross count rate require high thresholds
to maintain a reasonable FAR. More sophisticated approaches
incorporate spectral information, and include methods that
estimate the number of counts in a region based on nearby
windows or consider ratios of counts within different spectral
regions [1]. Even more advanced algorithms use the shape
of the entire spectrum to identify deviations [2], [3], [4], or
may aggregate test statistics from sequential measurements to
exploit time dependence. The reader is referred to [5], [6], [7]
for more details and comparisons between various methods.

The methods introduced in this paper make use of the
entire gamma-ray spectrum, and we begin by discussing
the advantages and disadvantages of different full-spectrum
decomposition methods used for anomaly detection and iden-
tification. One such method is noise-adjusted singular value
decomposition (NASVD), a spectral decomposition technique
developed for airborne gamma-ray measurements to reduce
noise in spectral bins due to Poisson sampling [8], [9].
NASVD removes linear combinations of spectral features
associated with small singular values, and then transforms data
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back into the original dimensionality, yielding filtered spectra.
The method implicitly assumes Gaussian statistics, and the
resulting spectral components are orthogonal under the inner
product. Although the first several components may resemble
spectra from known background contributions such as 40K and
uranium and thorium series radioisotopes, the orthogonality of
the components rules out true physical solutions, which must
be non-negative. Nevertheless, NASVD has been successfully
used for detecting spectral anomalies and extracting weak
signals from airborne measurements [10] and for developing
robust real-time background estimators [11].

A nearly identical technique to NASVD is Principal Compo-
nent Analysis (PCA), which has been used on portal monitor
data [3], among other types of detection systems. It is able
to detect and identify sources in transit past portal monitors,
but like NASVD, its background decomposition cannot have
a consistent physical interpretation.

More recently, Poisson Principal Component Analysis
(PPCA) has been used to accurately model the underlying
Poisson statistics of photon detection [12]. PPCA is a spe-
cific case of Exponential family Principal Component Analy-
sis [13], and it has shown an improvement over standard PCA
in source detection at low signal-to-noise, presumably due to
more accurately modeling the statistics at low counts [14].
Although PPCA assumes the correct statistical model and
generates non-negative spectral components, the components
still lack an intuitive, physical interpretation because they are
defined in logarithmic space and are therefore multiplicative,
not additive. While PCA, NASVD, and PPCA often result in
models containing features that one may recognize as result-
ing from physical processes (e.g., a component containing a
1460 keV peak from 40K), these methods do not fully capture
the additive, non-negative nature of gamma-ray spectra.

Non-negative matrix factorization (NMF) is a dimensional-
ity reduction technique that does not suffer from the drawbacks
associated with PCA and PPCA [15], [16]. NMF has been ap-
plied to many problems, including facial recognition [16], [17],
textual analysis [16], and particulate pollution analysis [18].
Because it models non-negative linear mixtures, NMF has
been used successfully in many spectroscopic applications,
including magnetic resonance chemical shift imaging [19],
[20] and hyperspectral imaging [21], [22]. Using NMF for
hyperspectral “unmixing” — i.e., determining the basic con-
stituent reflectivity spectra (“endmembers”) that contribute to
each pixel in the image — has been the subject of much
research in recent years [23], [24], [25], [26], [27], [28],
[29]. The linear mixing model assumed by most hyperspectral
unmixing analyses is directly analogous to gamma-ray photon
emission, i.e., the measured gamma-ray spectrum is the sum
of individual spectra from portions of the environment, and
therefore the extension of NMF from hyperspectral imagery
to gamma-ray spectroscopy follows naturally.

This work is the first known application of NMF to gamma-
ray spectroscopy. To demonstrate the methods described in
this work, we consider data collected by the Radiological
Multi-sensor Analysis Platform (RadMAP) [30]. In particular,
we use data from 99 detectors of the 10 × 10 array of
10 cm × 10 cm × 5 cm NaI detectors recorded at various

locations around the San Francisco Bay Area between De-
cember 2011 and December 2013. Despite the large array
size, binning gamma-ray events into 125-bin histograms at 1
Hz results in spectra with mean rates between 0.9 and 288
counts per bin per second. Due to these low count rates, the
Poisson likelihood function is optimized instead of the least
squares optimization often used in other fields. The resulting
model allows for the interpretation of gamma-ray spectra as
being the sum of a small number of non-negative component
spectra. When combined with a library containing spectral
templates of potential sources of interest, NMF models can be
used to simultaneously detect and identify sources by means of
statistical tests. Source-injected spectra [31], [32] containing
133Ba and 137Cs are used to quantify performance of the
anomaly detection and identification algorithms described in
this work.

The remainder of the text is outlined as follows. Section II
introduces NMF for background modeling, and source detec-
tion and identification. Section III outlines methods used for
evaluating the performance of the detection and identification
methods, as well as existing methods to compare with, and
results are reported in Section IV. Section V concludes with
an outlook on additional uses for NMF in gamma-ray spec-
troscopy.

II. NMF FOR DETECTION AND IDENTIFICATION

A. Non-negative Matrix Factorization

Dimensionality reduction is a procedure for encoding a
vector x ∈ Rd as a vector a ∈ Rk, where k is typically much
less than d, yielding a compact representation of the original
data. For linear dimensionality reduction techniques such as
PCA, a data matrix X ∈ Rn×d consisting of n d-dimensional
vectors can be approximated as the product of two low-rank
matrices:

X̂ = AV (1)

where A ∈ Rn×k are weights encoding data in the low-
dimensional space, and V ∈ Rk×d is a set of k basis vectors
spanning a subspace of Rd. Such techniques allow measure-
ments to be approximated as a linear combination of the rows
of V, which are components that capture structure in the data
being considered. One use of dimensionality reduction is data
visualization, in which high-dimensional data X is projected
to two or three dimensions using k = 2 or k = 3, respectively.
The coordinates A in the low-dimensional subspace can then
be visualized, possibly allowing one to see patterns in the
data capured by the components in V that may not have been
transparent at the full dimensionality.

NMF [15], [16] is a linear dimensionality reduction tech-
nique that approximates a matrix X in terms of the matrices
A and V, where all three matrices are required to have non-
negative entries. Prior to performing NMF, the rank k must
be specified, which is in contrast to PCA, where one can
vary k without recomputing the decomposition. Performing
the factorization in Equation (1) can be seen as a maximum-
likelihood estimation (MLE) problem, and given the discrete
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nature of the gamma-ray spectra, we consider the Poisson log-
likelihood which relates the measured data xij in X and the
low-rank approximation x̂ij in X̂

lnP (X|X̂) =

n∑
i=1

d∑
j=1

−x̂ij + xij ln x̂ij − lnxij ! (2)

where the sum is performed over the bins of all spectra in
X. In the MLE interpretation, each element x̂ij can then be
thought of as the mean rate per energy bin per spectrum.

Maximizing the log-likelihood in equation (2) is equivalent
to minimizing the Kullback-Leibler (KL) divergence between
X and X̂. The KL divergence is a quantity from information
theory [33] that measures how well a given “true” probability
distribution is approximated by an estimate of the distribution.
Here, the “true” distribution is given by the measured data X,
while the estimate is X̂. Though performing NMF is generally
a non-convex problem with no exact solution, meaning solu-
tions tend to be local minima, the error between the data X and
the estimate X̂ = AV, as measured by the KL divergence, has
been shown to be monotonically non-increasing under repeated
application of the following iterative update rules [34]:

ail ← ail

∑
j vljxij/x̂ij∑

j vlj
(3)

vlj ← vlj

∑
i ailxij/x̂ij∑

i ail
(4)

vlj ←
vlj∑
m vlm

(5)

ail ← ail
∑
m

vlm (6)

Equation (3) is used to update each element ail of A, then
equation (4) is used to update each element vlj of V. The
rows of V are then normalized using equation (5), and the
weights are updated again using equation (6) based on the
normalization of V. We refer to the procedure of using the
update rules in equation (3) – equation (6) to perform NMF
as Poisson NMF (PNMF).

As a comparison to PNMF, we also consider minimizing a
least squares objective function, which we refer to as L2NMF:

L(X, X̂) = ‖X− X̂‖2F (7)

where F denotes the Frobenius norm. From an MLE per-
spective, the objective function in equation (7) implicitly
assumes a Gaussian distribution in each bin with mean x̂ij
and having equal variance, meaning one could also write it as
a log-likelihood maximization, as with the Poisson model in
equation (2).

The iterative update rules for L2NMF [34] are given by:

ail ← ail
(XV>)il

(AVV>)il

vlj ← vlj
(A>X)lj
(A>AV)lj

vlj ←
vlj∑
m vlm

ail ← ail
∑
m

vlm

(8)

As with the PNMF update rules, the L2NMF update rules are
used to sequentially updates weights A, components V, then
a normalization of bases is performed.

Given a data matrix X, a desired rank k, and initial values
for A and V (e.g., using random initialization), equation (3)
– equation (6) and equation (8) yield approximate NMF
solutions using generalized KL divergence and least squares
objective functions, respectively. After initializing A and
V, both matrices are updated in an alternating fashion by
applying the multiplicative rules on one while the other is
held constant, which we refer to as training. Similar to other
iterative methods, the multiplicative updates on A and V are
typically repeated for a fixed number of steps, or until the
value of the reconstruction error, as measured by equation (2)
or equation (7), converges within some specified tolerance.

As a result of the iterative nature, NMF is more compu-
tationally intensive than other linear dimensionality reduction
techniques such as PCA. Additionally, the non-convexity of
NMF means that solutions may yield different combinations of
weights and basis vectors for different initializations. For the
applications described in this work, however, these drawbacks
have not been prohibitive. For example, while the training
procedure generally requires significantly more time to com-
plete than for PCA, training is typically performed offline,
meaning it does not present an operational burden. Given a
trained model V, the procedure for encoding a single spectrum
with NMF weights is carried out in near real-time, meaning
anomaly detection and identification can be performed as
spectra are being collected. To address the non-uniqueness of
solutions, in this work, each NMF decomposition is initial-
ized using non-negative double singular value decomposition
(NNDSVD) [35], which allows for deterministic NMF approx-
imations. NMF solutions generated using NNDSVD-initialized
matrices do not necessarily result in optimal performance, with
respect to detecting and identifying sources of interest, but
these solutions have found to work sufficiently well for the
analyses performed in this work.

B. Background Modeling using NMF

In applying NMF to gamma-ray spectroscopy, we describe
a spectrum x ∈ Rd+ as a linear combination of k non-negative
basis vectors. To perform NMF, n gamma-ray spectra, each
having d energy bins and which are representative of the
background in the environment to be searched for sources,
are used to form a matrix X ∈ Rn×d+ . We refer to this process
of generating the basis V on background data as background
modeling. For the factorization X̂ = AV, the rows of V are
normalized, such that the weights A can be interpreted as
the number of gamma-ray counts in the spectrum from the
corresponding NMF component.

The left side of Fig. 1 shows three components and the
associated weights resulting from performing 30,000 PNMF
fitting iterations on 86,400 one-second NaI spectra randomly-
sampled from various locations around the San Francisco Bay
Area. The data used are discussed further in Section III-A.
Note that the ordering of resulting NMF components is ar-
bitrary, unlike PCA where lower component numbers capture
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more variance in the data. However, the NMF components in
Fig. 1 were numbered to match the ordering of the correspond-
ing PCA components shown on the right side of Fig. 1.

The NMF components in Fig. 1 capture features that have
physical meaning. Component 1 appears to be the mean
spectral shape. Component 2 has a higher magnitude than the
other two at energies below 125 keV, which may be indicative
of distant sources or multiple scatters. Component 3 is a com-
bination of the 40K 1460 keV line and the 208Tl 2615 keV line,
among others, and generally shows more pronounced peaks
than Component 1. As a result of the physical interpretation,
when encoding a spectrum using NMF, the component weights
yield insight to the composition of the gamma-ray background.
This interpretation is particularly of interest for the integration
of gamma-ray detectors with other environmental sensors,
where the latter could potentially provide information about
the composition of the local gamma-ray background.

As a comparison with components formed using NMF, the
upper right panel of Fig. 1 shows the first three principal com-
ponents (PCs) found by performing PCA using the correlation
matrix generated from X. By comparing the components V
and distributions of weights A from both NMF and PCA,
we see that there are similarities in the structure that is
captured within components. The distributions of weights for
component 1 for NMF and PCA, which contain the mean
spectral shape, are similar both in shape and also in that
both capture the most variance. We also see differences in
the spectral shapes, the most obvious being that components
2 and 3 from PCA capture both positive and negative spectral
features.

C. Anomaly Detection using NMF

Anomaly detection aims to establish whether or not a
spectrum is unusual without attempting to identify radiological
sources. The NMF formulation described above can be used
for anomaly detection by finding the reconstructed low-rank
approximation x̂ = a>V of a spectrum x, and treating x̂
as the mean rate per energy bin per spectrum. Using the
mean background rate per energy bin x̂i, the probability of
measuring greater than or equal to xi counts or less than or
equal to xi counts, referred to as the p-value pi, is calculated
for each bin. To account for measurements that are either much
higher or lower than the mean rate, we consider the two-tailed
p-value

pi = 2min(F (xi; x̂i), 1− F (xi; x̂i)) (9)

where F (xi; x̂i) is the cumulative density function of the
Poisson distribution with mean rate x̂i. We then aggregate the
p-values to form the NMF anomaly detection score:

AD{P,L2}(x) = −
1

d

d∑
i=1

ln pi. (10)

This anomaly detection metric is evaluated over a dataset
containing only background spectra, and from this distribution
of metrics, we can empirically set a threshold TZ based
on a target FAR, where Z specifies the anomaly detection
metric used. When testing a spectrum x′ for the presence

of anomalies, ADZ(x′) is compared to TZ , and an alarm is
registered if ADZ(x′) exceeds TZ .

D. Simultaneous Detection and Identification using NMF

With the additive, parts-based interpretation of NMF in
mind, the background model V can be augmented to account
for contributions from gamma-ray sources of interest by in-
cluding a source template ts ∈ Rd+ corresponding to source s
(e.g., 133Ba) with the matrix V to form a combined background
and source model Vs =

[ V
t>s

]
. By fitting a spectrum to Vs,

the spectrum is approximated as a linear combination of the
background components and the source. The source template,
representing the system’s response to a particular source, can
be generated from measurements, simulation, or by performing
NMF on data containing sources.

The training procedure is used to generate both the compo-
nents V and weights A. When examining new spectra X′,
the model Vs is applied and held fixed, resulting in new
weights A′. Fig. 2 shows the result of performing an NMF
fit to a spectrum using both the background-only model V
and the combined source and background model Vs. The
measurement is a one-second NaI spectrum of background
data from RadMAP that includes source contribution from
an injected 85-µCi 133Ba source at 20m standoff distance.
We see that together, the background components generated
from NMF and the 133Ba source template perform a better
approximation of the spectrum than the background model
alone.

To detect and identify sources using the augmented model
Vs, we examine a test statistic for determining the presence or
absence of a source within a spectrum. A given spectrum x is
fit to both the background model V and augmented model
Vs, yielding the negative log-likelihoods − lnP (x|V) and
− lnP (x|Vs), respectively, which are then used to form a
log-likelihood ratio test statistic

Ds(x) = −2
{
lnP (x|V)− lnP (x|Vs)

}
. (11)

The test statistic Ds(x) quantifies the amount by which the
fit is improved by including the additional source template
ts; if the fit is not significantly enhanced, Ds(x) ≈ 0, and
Ds(x) increases as including the template improves the fit.
The distribution of Ds(x) evaluated on background data free
of the source s shows the amount of variation expected in the
background, and we can use this information to empirically
set a per-template threshold DT

s based on a desired FAR.
Fig. 3 shows histograms of Ds(x) for 137Cs and 133Ba from
55 hours of NaI spectra collected by RadMAP. We see that
the distribution peaks at Ds(x) = 0 for both sources, and
decreases with increasing Ds(x).

Similar to the procedure described in Section II-C, for a
given spectrum x′ to be tested for the presence of source
s, Ds(x

′) is calculated and compared to the empirically-
determined threshold DT

s . If Ds(x
′) exceeds the threshold

DT
s , the algorithm registers an alarm for the source s. The

procedure of training models using NMF, fitting spectra using
background models and source templates, and performing
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Fig. 1. Three Poisson NMF basis vectors V formed from background spectra collected by the RadMAP mobile detection system (upper left) and histograms
of weights A corresponding to each component (lower left). The first three principal components formed from background spectra (upper right) and histograms
of weights corresponding to each component (lower right). For both NMF and PCA, models were formed using 86,400 randomly-sampled spectra, each with
one-second integration time, and for NMF, training was done over 30,000 fit iterations. Note that there is no significance in the numbering of NMF components,
unlike in PCA, however, NMF components were numbered to match the order of corresponding PCs.

likelihood ratio tests to perform identification is hereafter
referred to as ADIP and ADIL2.

III. BENCHMARKING

A. RadMAP Source Injection Data

Gamma rays with energy between 67 and 3000 keV mea-
sured with the NaI array on RadMAP are binned using a one-
second integration time into 125-dimensional spectra with bin
widths linearly increasing with energy. An approximately 50%
opacity coded mask made of lead was on the starboard side
of the NaI array during data collection. Note, however, that
this mask has no bearing on conclusions made here regarding
relative algorithm performance. See [32] for further discussion
on the mask and implications to detection sensitivity.

To simulate measuring various source activities, source-
injection, in which a source spectrum is downsampled to the
desired activity and superimposed on measured background
data, is used. Similar to procedures used in previous RadMAP
studies [31], [32], segments of data in which the vehicle
traveled straight for at least 100 m, within a tolerance of
2.5 m, and maintained a speed of 6.7± 1.3 m/s were used as
source-injection background data. A set containing 55 hours
of data is sampled from for creating background models and
threshold setting, and is referred to as the training set. An
additional 2 hours of data that met the above criteria are used

as the background for source injections, yielding 315 injected
segments, and is referred to as the test set. The background
count rates for the spectra used in training models have a
mean and standard deviation of 9417 and 1871 counts per
second, respectively, while spectra used in source injection
have a mean and standard deviation of 9658 and 1942 counts
per second, respectively. Fig. 4 shows three randomly-sampled
background spectra from the training set, showing some of the
variation captured.

Source injections resulting from both background-
subtracted unshielded 137Cs measurements and simulations
of unshielded 133Ba were then separately added to the
aforementioned background segments. PD is defined as the
proportion of segments in which sources are detected or
identified. Systematic uncertainties for the source contributions
are 11% for the background-subtraction of 137Cs and 10%
for simulations of 133Ba. These systematic uncertainties have
no effect on the conclusions drawn about relative algorithm
performance, and are excluded from tables and figures
containing results. Additional details regarding the injection
source contributions can be found in [32].

B. Background Model Rank Selection

In performing dimensionality reduction, the rank k of the
low-dimensional subspace must be specified. In general, in-
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Fig. 2. Comparison of a fit to a spectrum containing 133Ba using only
the background model V (top) and using the background and source model
VBa-133. The upper pane shows the weighted background components, as well
as their sum. The lower pane shows the sum of the background components,
the weighted source template, and the sum of the background and source
components. By including the source template, the model is able to fit the
356 keV 133Ba peak. An 85-µCi 133Ba source at 20m standoff distance is
used.

creasing k will result in enhanced fits. For complete decom-
position methods such as PCA and NMF, as k → d, the
reconstruction error will vanish, resulting in the loss of ability
to detect anomalies. As a result, we aim to choose a value
of k that allows us to describe background variations in data
sufficiently well, but not at the cost of losing the ability to
detect anomalies within spectra.

The Akaike Information Criterion (AIC) [36] is used for
determining the number of components used, and is defined
as:

AIC = 2κ− 2 lnP (X|X̂) (12)

where κ = kn+kd−k is the total number of free parameters
in the model X̂ = AV, with k degrees of freedom being
removed due to the normalization constraint on V. The value
of k that results in the lowest AIC on the training data is used,
as it yields the best fit with the fewest parameters.

Equation (12) was used on PNMF and PCA models using
n = 86, 400 1s spectra, and both yielded a value of k = 2
components. AIC for L2NMF was seen to decrease monoton-
ically with k, and as a result k = 2 was also used to be
consistent with the other models, though additional values of
k are also considered for completeness. For readers familiar
with PCA, the proportion of variance explained as a function
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formed by computing the difference of negative log-likelihoods between
source and background models Vs and background only models V over a
background dataset containing 55 hours of NaI spectra collected by RadMAP.
The distribution is used to empirically select a threshold based on a target
FAR. The vertical lines show thresholds for particular FARs, given in the
legend.
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Fig. 4. Three randomly-sampled background spectra from the training set,
each labeled with the respective number of total counts in the spectrum. From
these three spectra, we can see that samples vary not only by magnitude, but
also by spectral features. Spectral variability is captured by the components
in the NMF and PCA models described in this work, as well as the empirical
threshold setting using for anomaly detection and identification algorithms.
Note that such diverse spectra are also present in the background spectra
used for source injection.

of k was also examined for PCA and suggested a value of
k = 2, in agreement with the AIC. Each PNMF, L2NMF, and
PCA model described in the following sections will then use
k = 2 components trained over a single subset of 24 hours of
background data sampled from the 55 hour training set. Each
model is then evaluated over the entire 55 hour training set in
empirically determining thresholds.
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C. ADl and ADIl in the Limit of Known Background

To understand the limitations of the NMF-based anomaly
detection and identification algorithms, we consider the per-
formance of each algorithm in the ideal case, where the mean
background rate for each spectrum is known. That is, for each
set of injected spectra Xtest consisting of background and
source contributions (i.e., Xtest = Xbkg + Xsrc), we assume
that the mean background rate X̂bkg resulting from performing
NMF on each spectrum is known. Note that the background
used here Xbkg are the 2 hours of background data referred to
previously, which are separate measurements from the training
data used in generating models.

In this best case scenario, algorithm performance is pri-
marily limited by statistical fluctuations in the background
term Xbkg, and we refer to this as the known background
limit (KBL). One reason for exploring the KBL is that
this procedure lends insight to how much performance can
be improved with an enhanced understanding of the local
radiological background.

To determine KBL performance, we use the following
procedure:

1) Project the measured background contribution Xbkg onto
the subspace generated by V to yield the NMF weights
Abkg.

2) Estimate the mean background rate as X̂bkg = AbkgV.
3) To detect anomalies, use X̂bkg as the reconstructed

spectra to which the measured spectra X are compared.
4) To perform identification, hold the background contri-

bution X̂bkg fixed, and find the source contribution that
best fits the source and background model to the spectra
X.

For both anomaly detection and simultaneous detection and
identification, thresholds are computed as previously de-
scribed, and metrics from test spectra are compared to these
thresholds to determine the presence or absence of sources.

D. Anomaly Detection Benchmarking

In section IV-A two existing methods, gross counts Kσ,
referred to here simply as Kσ, and PCA-based anomaly
detection, are compared to ADP and ADL2. Kσ measures how
many standard deviations σ the gross counts in a spectrum are
away from the mean number of background counts µ as:

K =
‖x‖1 − µ

σ
, (13)

where the 1 subscript in the denominator denotes the L1
norm of x, or gross counts. Here, the mean µ and standard
deviation σ of the total number of counts within a spectrum
are determined from the training set.

A PCA-based alarm metric [37], [12], [38] uses the first
k PCs Ṽ found from PCA to measure deviations between a
spectrum and its low-dimensional PCA representation

ADPC(x) =
‖(I− Ṽ>Ṽ)x‖2√

‖x‖1
. (14)

This normalization is included to account for larger residuals
at higher count rates, which is in contrast to the p-value based

TABLE I
REGION OF INTEREST ENERGY WINDOWS (KEV)

Source R B1 B2
133Ba 340.0 - 397.2 397.2 - 443.0 443.0 - 474.9
137Cs 632.3 - 670.4 670.4 - 749.8 749.8 - 812.2

anomaly detection metric that accounts for variation by means
of a Poisson model for each energy bin. As opposed to stan-
dard PCA, which computes the singular value decomposition
(SVD) on the covariance matrix, the basis Ṽ is formed by
performing the SVD on the correlation matrix.

E. Region of Interest (ROI)

To assess the relative performance of the ADIP and ADIL2
algorithms, a Region of Interest (ROI) algorithm was evaluated
on the same data. The ROI algorithm, as described in [32],
estimates the number of source counts within a spectral region
in which gamma rays from a particular source are expected. To
estimate source counts in the ROI R, the algorithm first uses a
linear relationship between the number of background counts
in the ROI and the number of counts in neighboring regions B1
and B2. Regions B1 and B2 are chosen to be at higher energies
than R so that they do not contain counts from downscattered
source gamma rays, while being sufficiently close to R to
predict background counts in R. The window edges defining
the ROI and the background regions are shown in Table I.

The number of background counts in R is estimated as
r̂ = b>w, where b is a vector containing counts within the
background windows B1 and B2, and w are weights found
via Poisson regression [39] on the same background training
set used for training NMF models. When evaluating spectra
for the presence of the source, the difference between the
measured counts r and estimated background counts r̂, or the
residual, forms the ROI metric, defined as

ROI(x) =
r − r̂√
r̂
. (15)

This metric is then compared to a decision threshold to
determine the presence or absence of a source. As with the
other methods described in this work, the decision thresholds
are computed empirically for a given FAR by calculating the
residual over background data. Spectra in which the ROI has
an excess of counts are then considered anomalous.

F. Probability of Detection

Similar to [32], the performance of the ADIP and ADIL2
algorithms is evaluated by calculating the probability of de-
tection PD as a function of source activity. In particular, we
consider source drive-bys in which RadMAP passes a source
of a specific activity within a background environment. A total
of 315 source drive-bys are performed, and PD is empirically
determined by the proportion of drive-bys in which the source
was detected. Empirical values of PD are then fit to a sigmoid
function of the form

PD(x) =
1

1 + e−(x−µ)/ω
(16)
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Using this relationship, we determine the minimum detectable
activity at 95% probability of detection (MDA95) at a fixed
FAR. The Jeffreys interval [40] is used to determine the 68%
confidence interval on the probability of detection.

IV. RESULTS

A. Anomaly Detection

As with the procedure for simultaneous detection and
identification, values for NMF-based and PCA-based anomaly
detection scores were calculated over the background training
set X, and a threshold on scores were empirically determined
using a 1/8 hr−1 (3.5 × 10−5s−1) FAR. For anomaly detec-
tion, however, only a single threshold is determined, whereas
identification requires a threshold for each source. The same
24 hour sample of spectra used in training the NMF models
was used in training PCA models, and the entire 55 hour set
of data was used for threshold setting.

Fig. 5 shows a comparison of probability of detection curves
for NMF and PCA-based anomaly detection algorithms, each
using k = 2. Table II shows the corresponding MDA95

resulting from a fit of PD to a sigmoid for the k = 2
models, as well as models using k = 4. Note that models
with k > 4 were also considered, but performance did not
improve significantly, and results are omitted. From Fig. 5
and Table II, we see that ADP and ADL2 are able to maintain
an MDA near 200 µCi for both sources, while ADPC has an
increased MDA for 137Cs, which is likely resulting from the
difference in anomaly detection metrics between the NMF and
PCA-based models. Note, however, that for both sources and
for both k = 2 and k = 4, ADP outperforms ADL2, which
is perhaps attributed to the use of a more accurate statistical
model in ADP . Furthermore, in detecting 137Cs, ADP has
a similar MDA to ADPC KBL. That is, by using a more
accurate statistical model and computing a different anomaly
detection score, ADP is able to detect weaker sources than
the PCA-based method under a near-perfect understanding
of the gamma-ray background. However, ADPC offers a
slight advantage over ADL2 for 133Ba, suggesting that these
performance enhancements may primarily exist for sources
with gamma-rays at higher energies.

Not shown in Fig. 5 are curves for Kσ. As Table II shows,
the MDA of Kσ is much higher than any of the NMF and
PCA-based methods. The poor performance of Kσ reflects the
background variability seen by RadMAP, as high thresholds
must be set to maintain the FAR of 1/8 hr−1.

When comparing the performance of the dimensionality
reduction-based anomaly detection methods with their respec-
tive KBLs, we see that there is room for improvement. By
including additional information about the local gamma-ray
environment, it is possible that these methods approach the
case of the known background. However, the NMF-based
methods are better suited for coupling with environmental
sensors, due to the physical interpretation of NMF.

In using empirical thresholds, results are ultimately depen-
dent on the data used to estimate thresholds. To understand
the effect that the choice of dataset used for determining
thresholds has on performance, we consider an approach which
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Fig. 5. Probability of detection of 133Ba (top) and 137Cs (bottom) sources at
20m standoff using NMF-based detection algorithms, a PCA-based detection
algorithm, and both NMF and PCA-based algorithms in the case of a known
background, each model using k = 2 components at 1/8 hr −1 FAR and
1s integration time. Solid lines show the measured performance, and dashed
lines show performance in the KBL. Note that only anomaly detection is
performed here, meaning sources are not identified by the algorithms. The
95% probability of detection is indicated by the dashed horizontal line. Error
bars indicate the 68% Jeffreys interval. Not shown is a curve for gross counts,
which has a significantly higher MDA.

TABLE II
MDA95 (µCI + STATISTICAL ERROR) FOR ANOMALY DETECTION

Method
Source 133Ba 137Cs

ADP KBL, k = 2 119.9 ± 0.3 132.7 ± 0.4
ADL2 KBL, k = 2 132.2 ± 0.3 150.3 ± 0.6
ADPC KBL, k = 2 131.2 ± 0.2 212.0 ± 0.5
ADP , k = 2 188.5 ± 0.7 215.9 ± 0.5
ADP , k = 4 181.3 ± 0.9 209.4 ± 0.7
ADL2, k = 2 195.9 ± 0.4 240.3 ± 0.6
ADL2, k = 4 182.4 ± 0.5 231.1 ± 0.8
ADPC , k = 2 192.9 ± 0.4 336.5 ± 0.7
ADPC , k = 4 189.1 ± 0.5 325.8 ± 0.9
Kσ 1971.0 ± 13.6 2302.2 ± 16.1

estimates thresholds based on random subsets of data. In
particular, the data is split into many contiguous segments of
measurements, and a number of these segments are picked
at random, without replacement, and used for computing
thresholds. Such random sampling was performed 100 times,
with each iteration having a combined measurement time of
approximately 24h. Thresholds for ADP , ADL2, and ADPC
were computed for each of the 100 trials, resulting in a
distribution of thresholds for each anomaly detection method.
The estimated mean and standard deviation of each metric,
along with thresholds generated using the entire 55h dataset,
are given for k = 2 models in Table III. This table shows
that thresholds estimated using the entire dataset fall within
one standard deviation of the mean of threshold generated
using random subsets. The mean and standard deviation of
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TABLE III
COMPARISON OF EMPIRICAL ANOMALY DETECTION THRESHOLDS

Threshold ADP ADL2 ADPC

Full dataset 1.337 1.420 1.611
Random subsets 1.341 ± 0.007 1.415 ± 0.012 1.613 ± 0.017

TABLE IV
LOWER AND UPPER ESTIMATES OF MDA95 (µCI + STATISTICAL ERROR)

FOR ANOMALY DETECTION

Method
Source 133Ba 137Cs

ADP , k = 2 (187.5 ± 0.6, (214.5 ± 0.5,
191.9 ± 0.6) 220.8 ± 0.5)

ADL2, k = 2 (194.5 ± 0.4, (241.1 ± 0.7,
199.9 ± 0.4) 251.9 ± 0.8)

ADPC , k = 2 (190.4 ± 0.4, (331.4 ± 0.7,
196.3 ± 0.5) 343.4 ± 0.7)

these thresholds are then used to generate a lower and upper
estimates for thresholds, yielding a lower and upper estimate
on MDA. Lower and upper values for MDA using thresholds
equal to a standard deviation below and above the mean,
respectively, are reported in Table IV. The range of MDA
values presented in Table IV suggest that the procedure for
computing ADP may result in empirical thresholds that are
less sensitive to data than ADL2 and ADPC .

B. Simultaneous Detection and Identification

Using a FAR of 1/8 hr−1, thresholds for both sources were
empirically determined, yielding the values DT

Cs = 14.1 and
DT

Ba = 14.4. Additionally, an L2NMF model was formed and
thresholds were calculated using the same training set as the
PNMF model described above, though we omit thresholds and
figures specific to L2NMF for the sake of brevity. Note that
in each case, we are only searching for a single source. In
the case of multiple sources being separately tested for, false
alarm rates should be adjusted accordingly (e.g., using the
Bonferroni correction), ultimately increasing thresholds and
reducing sensitivity.

Fig. 6 shows the probability of detection for 133Ba and 137Cs
using both NMF-based algorithms and an ROI algorithm, and
Table V shows the corresponding MDA95 for each algorithm
resulting from a fit of PD to a sigmoid. From Fig. 6, we can see
that there is a significant improvement in detection capabilities
by using NMF-based algorithms, and that there are additional
improvements by using PNMF models over L2NMF.

Similar to results shown in IV-A, there is a difference
between measured performance of the NMF-based detection
and identification methods and the performance in the case
of a known background. By informing these methods with
data about the local environment, more accurate background
models could potentially be created, enhancing detection and
identification performance.
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Fig. 6. Probability of detection and identification for 133Ba (top) and
137Cs (bottom) using the ADIP , ADIL2, NMF-based algorithms in the case
of a known background, each using, k = 2 components, and an ROI
algorithm. Solid lines show the measured performance, and dashed lines show
performance in the KBL. Spectra were formed using 1s integration time for
99 NaI detectors on RadMAP, and source injection was performed using 20m
standoff distance and 6.7±1.3 m/s vehicle speed. For both sources, a 1/8 hr−1

FAR was used. Both the ADIP and ADIL2 methods are able to achieve a 95%
probability of detection, indicated by the dashed horizontal line, at a much
lower activity than the ROI algorithm. Error bars indicate the 68% Jeffreys
interval.

TABLE V
MDA95 (µCI + STATISTICAL ERROR) FOR DETECTION AND

IDENTIFICATION

Method
Source 133Ba 137Cs

ADIP KBL, k = 2 38.9 ± 0.1 46.3 ± 0.2
ADIL2 KBL, k = 2 40.8 ± 0.1 29.1 ± 0.1
ADIP , k = 2 79.6 ± 0.3 82.4 ± 0.4
ADIL2, k = 2 92.7 ± 0.3 88.4 ± 0.3
ROI 168.5 ± 0.6 145.2 ± 0.8

V. DISCUSSION

Detecting and identifying gamma-ray sources relies on the
ability of an algorithm to distinguish source and background.
Here, we proposed of the use of NMF, under the assump-
tion of Poisson statistics, to model radiological backgrounds.
These models can be used to find radiological anomalies,
and by using spectral templates, source identification can be
performed. In addition to performing identification for single
sources, multiple sources can be simultaneously tested for by
appending additional source templates to the matrix Vs. Under
the given parameters, the anomaly detection and identification
algorithms outperform standard algorithms. Note, however,
that the decomposition-based methods here were only opti-
mized with respect to the number of degrees of freedom, and
that the performance of each method, including the benchmark
algorithms, may be enhanced by optimizing integration time,
performing spectral smoothing, normalizing input variables,
and optimizing energy windows in the case of ROI.

While the methods in this work were demonstrated using a
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large and unique detector system, these methods are general
enough to be deployed on a wide range of systems. Further-
more, these methods can be extended to detect and identify
gamma-ray sources other than the two studied in this analysis,
albeit with additional care. One consideration is the similarity
in spectral shape between the source of interest and the NMF
components used in estimating background – sources with a
high degree of similarity to background components may be
incorrectly attributed to background, ultimately reducing the
ability to detect the particular source. If a source is seen to
exhibit such behavior, one may devise a means of reducing the
similarity, for example leveraging the non-uniqueness and se-
lecting background components that are the most distinct from
the sources of interest (e.g., with respect to cosine similarity
or KL divergence). Similarly, when searching for multiple
sources, one must be aware of the similarity between sources,
as source templates that contain overlapping gamma-ray lines
may result in misidentification. Lastly, though only unshielded
sources were considered in this work, which admittedly is a
best case scenario, the methods described in this work can be
extended to use shielded templates as well.

Beyond anomaly detection and identification, Poisson NMF
can be considered a general framework for approaching
gamma-ray spectroscopic analyses, as it lends itself to a useful
physical interpretation due to its additive, non-negative nature.
For example, the geospatial distribution of NMF weights may
yield the environmental composition of particular radioiso-
topes, which could potentially find use in applications such
as contamination mapping.

From Fig. 5 and Fig. 6, we see that there is a signifi-
cant difference between the measured performance and the
performance in the limit of known background. Additional
information about the environment, for example, in the form
of Bayesian priors and regularization, may potentially enhance
detection and identification performance. Prior probabilities
of background weights A, determined from previous mea-
surements, could be introduced to provide constraints to
background models by means of maximum a posteriori, as
opposed to the MLE used here, which may allow for a more
accurate background estimate. Additionally, performance can
be enhanced further by aggregating test statistics over several
spectra, or by sequentially estimating weights (e.g., using a
Kalman filter) to create time-dependent models.
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